Articles

Designing two-dimensional metamaterials of controlled static and dynamic properties

Metamaterials, Homogenization, Poisson’s ratio, Wave propagation, Mechanical properties, Frequency band gaps

Computing the effective bulk and normal to shear properties of common two-dimensional architectured materials

Metamaterials, Poisson’s ratio, Auxetics, Anti-auxetics, Shear modulus, Bulk modulus, Slenderness

Mechanics of beams made from chiral metamaterials: Tuning deflections through normal-shear strain couplings

Metamaterials, Chirality, Coupling, Bending, Balance, Strains

Optimal structural arrangements of multilayer helical assemblies

Helical assembly, Optimal design, Numerical simulation, Axial strain, Torsion Equilibration

Machine Learning Classifiers for Surface Crack Detection in Fracture Experiments

Ductile Fracture, Uniaxial Tension, Plane Strain Tension, Classification, Haralicks, Machine learning

Stress-strain Response of Polymers Made Through Two-photon Lithography: Micro-scale Experiments and Neural Network Modeling

Two-photon polymerization, Raman spectroscopy, Negative-tone photoresist characterization, Uniaxial compression, Degree of polymerization, Machine learning

Journal  Publications

  • [32] “Stress-strain response of Polymers made through two-photon lithography:Micro-scale experiments and neural network modeling”, M. Diamantopoulou, N. Karathanasopoulos, D. Mohr, Additive Manufacturing, 102266, 2021, https://doi.org/10.1016/j.addma.2021.102266
  • [31] “An experimental and numerical investigation of the role of rivet and die design on the self-piercing riveting joint characteristics of aluminum and steel sheets”, N. Karathanasopoulos, K. Pandya, D. Mohr, Journal of Manufacturing Processes, Vol:69, Page:290-302, 2021, https://doi.org/10.1016/j.jmapro.2021.07.049
  • [30] “Machine learning classifiers for surface crack detection in fracture experiments”, A. Müller, N. Karathanasopoulos, C. Roth, D. Mohr, International Journal of Mechanical Sciences, Volume 209, 1 November 2021, 106698, https://doi.org/10.1016/j.ijmecsci.2021.106698
  • [29] “Self-piercing riveting process: Prediction of joint characteristics through finite element and neural network modeling”, N. Karathanasopoulos, K. Pandya, D. Mohr, Journal of Advanced Joining Processes, 2021(3), 100040, https://doi.org/10.1016/j.jajp.2020.100040
  • [28] “Extending the elastic and plastic design space of metamaterials through load-specific, multiscale inner material architectures”, International Journal of Mechanical Sciences, 2020, 175, 105523, https://doi.org/10.1016/j.ijmecsci.2020.105523
  • [27] “Chiral and non-centrosymmetric effects on the nonlinear wave propagation characteristics of architectured cellular materials”, Karathanasopoulos, J-F Ganghoffer, Waves in Random and Complex media, 2020, 1-19, https://doi.org/10.1080/17455030.2020.1834169
  • [26] “LatticeMech:A discrete mechanics code to compute the effective static properties of 2D metamaterial structures”, Nikolaos Karathanasopoulos, F Dos Reis, Panagiotis Hadjidoukas, Jean-Francois Ganghoffer, SoftwareX, 11,100446, https://doi.org/10.1016/j.softx.2020.100446
  • [25] “Higher-gradient and micro-inertia contributions on the mechanical response of composite beam structures”, M Ayad, N. Karathanasopoulos, J-F Ganghoffer, H. Lakiss, International Journal of Engineering Science, 2020, 154, 103318,https://doi.org/10.1016/j.ijengsci.2020.103318
  • [24] “Mechanics of beams made from chiral metamaterials:Tuning deflections through normal-shear strain couplings”, N. Karathanasopoulos, F. Dos Reis, M. Diamantopoulou, J.F. Ganghoffer, Materials & Design, 2020, 108520, https://doi.org/10.1016/j.matdes.2020.108520
  • [23] ” Computation of effective piezoelectric properties of stratified composites and application to wave propagation analysis”, H. Reda, N. Karathanasopoulos, G. Maurice, J.F. Ganghoffer, H. Lakiss, ZAMM, 2, e201900251, https://doi.org/10.1002/zamm.201900251
  • [22] “On the role of second gradient constitutive parameters in the static and dynamic analysis of heterogeneous media with micro-inertia effects”, M Ayad, N Karathanasopoulos, H Reda, JF Ganghoffer, H Lakiss, International Journal of Solids and Sructures, (2019), ISSN 0020-7683, https://doi.org/10.1016/j.ijsolstr.2019.10.017
  • [21]“Dispersion characteristics of periodic structural systems using higher order beam element dynamics”, M Ayad, N Karathanasopoulos, H Reda, JF Ganghoffer, H Lakiss, Mathematics and Mechanics of Solids, (2019), https://doi.org/10.1177/1081286519880227
  • [20]“Stiffness and strength of hexachiral, honeycomb-like metamaterials”, T. Tancogne-Dejean, N. Karathanasopoulos, D. Mohr, Journal of Applied Mechanics, (2019), DOI: 10.1115/1.4044494
  • [19]“Efficient computing of the viscoelastic behavior if tendon subunits”, N. Karathanasopoulos, P. Hadjidoukas, H. Reda, J-F. Ganghoffer, Journal of Computational Methods in Sciences and Engineering, 1-15 (2019), DOI: 10.3233/JCM-193704
  • [18] “The role of non-slender inner structural designs on the linear and non-linear wave propagation attributes of periodic, two-dimensional architectured materials”,N. Karathanasopoulos, J-F. Ganghoffer, Journal of Sound and Vibration, 455 (2019), pp:312-323,  https://doi.org/10.1016/j.jsv.2019.05.011
  • [17] “Investigating the effect of aging on the viscosity of tendon fascicles and fibers”, N. Karathanasopoulos, J-F. Ganghoffer, Frontiers in Bioengineering and Biotechnology, 7 (2019), pp:107, https://doi.org/10.3389/fbioe.2019.00107
  • [16] “Exploiting viscoelastic experimental observations and numerical simulations to infer biomimetic artificial tendon fiber designs”, N. Karathanasopoulos, J-F. Ganghoffer, Frontiers in Bioengineering and Biotechnology, 7 (2019), pp:85https://doi.org/10.3389/fbioe.2019.00085
  • [15] “TendonMech: An open source high performance code to compute the mechanical behavior of tendon fascicles”, N. Karathanasopoulos, P. Hadjidoukas, SoftwareX,  9 (2019), pp. 324-327,  https://doi.org/10.1016/j.softx.2019.04.007
  • [14] “Unravelling the viscoelastic, buffer-like mechanical behavior of tendons: A numerical quantitative study at the fibril-fiber scale”, N. Karathanasopoulos, G. Arampatzis, J-F. Ganghoffer, Journal of the Mechanical Behaviour of Biomedical Materials, 90C (2019), pp. 256-263 https://doi.org/10.1016/j.jmbbm.2018.10.019
  • [13] “Computing the effective bulk and normal to shear properties of common two-dimensional architectured materials”,N . Karathanasopoulos, F.D. Reis, H. Reda, J.F. Ganghoffer, Computational Materials Science, (2018), Volume: 154, pp:284-294, https://doi.org/10.1016/j.commatsci.2018.07.044
  • [12] Wave propagation characteristics of periodic structures accounting for the effect of their higher order inner material kinematics”, H. Reda, N. Karathanasopoulos, J.F. Ganghoffer, H. Lakiss, Journal of Sound and Vibration, (2018), Volume: 431, pp:265-275, https://doi.org/10.1016/j.jsv.2018.06.006
  • [11] “Influence of first to second gradient coupling energy terms on the wave propagation of three dimensional non-centrosymmetric architectured materials”, H. Reda, N. Karathanasopoulos, Y. Rahali, J.F. Ganghoffer, H. Lakiss, International Journal of Engineering Science, (2018), Volume: 128, pp:151-164,
    https://doi.org/10.1016/j.ijengsci.2018.03.014
  • [10] “The role of anisotropy on the static and wave propagation characteristics of architectured media”, H. Reda, N. Karathanasopoulos, K. Elnady, J-F. Ganghoffer, H. Lakiss, Materials & Design, (2018), Volume: 147, pp:134-145,
    https://doi.org/10.1016/j.matdes.2018.03.039
  • [9] “Finite element modeling of the elastoplastic axial-torsional response of helical constructions to traction loads”, N.Karathanasopoulos, H. Reda, J.F. Ganghoffer, International Journal of Mechanical Sciences (2017),Volume 133,
    pp:368-375, doi:10.1016/j.ijmecsci.2017.09.002
  • [8] “Designing two-dimensional metamaterials of controlled static and dynamic properties”, N. Karathanasopoulos, H. Reda, J.F. Ganghoffer, Computational Material Science (2017), Vol:138, pp:323-332, doi:10.1016/j.commatsci.2017.06.035
  • [7] “Bayesian characterization of the tendon fascicle’s structural composition using finite element models for helical geometries”, N. Karathanasopoulos, P. Angelikopoulos, C. Papadimitriou, P. Koumoutsakos, Computer Methods
    in Applied Mechanics and Engineering (2017), Vol:313, pp:744-758, doi: 10.1016/j.cma.2016.10.024
  • [6] “Optimal structural arrangements of multilayer helical assemblies”, N. Karathanasopoulos, P. Angelikopoulos, International Journal of Solids and Structures (2016), Vol:78-79, pp.1-8, doi:10.1016/j.ijsolstr.2015.09.023
  • [5] “Analytical closed-form expressions for the structural response of helical constructions to thermal loads”, N. Karathanasopoulos, J.F. Ganghoffer, K.O. Papailiou, International Journal of Mechanical Sciences (2016), Vol:117,
    pp.258-264, doi:10.1016/j.ijmecsci.2016.08.010
  • [4] “Numerical characterization of the structural response of helical constructions to radial and thermal loads”, N. Karathanasopoulos, Journal of Computational Methods in Sciences and Engineering (2016), Vol. 16, pp.787-800, doi:10.3233/JCM-160691
  • [3] “Two dimensional modeling of helical structures, an application to simple strands”, N. Karathanasopoulos and G.Kress, Computers and Structures (2016), Vol:194, pp.79-84, doi:10.1016/j.compstruc.2015.08.016
  • [2] “Torsional stiffness bounds of helical structures under the influence of kinematic constraints”, N. Karathanasopoulos, Structures (2015), Vol:3, pp.244-265, doi:10.1016/j.istruc.2015.05.004
  • [1] “Mechanical response of a helical body to axial, torsional and radial strain”, N. Karathanasopoulos and G. Kress, International Journal of Mechanical Sciences (2015), Vol:94-95, pp.260-265, doi: 10.1016/j.ijmecsci.2015.02.022

Book Chapters

  • [B2] “Generalized Models and Non-classical Approaches in Complex Materials 2, Chapter 3: Nonlinear wave propagation analysis in hyperelastic network materials”,H. Reda, K. ElNady, J.F. Ganghoffer, N. Karathanasopoulos, Y. Rahali, H. Lakiss, Springer, ISBN 978-3-319-77503-6, in press (2018), DOI:10.1007/978-3-319-77504-3
  • [B1] “Advances in Mechanics of Microstructured Media and Structures, Chapter 16: Mechanics of Metamaterials, an Overview of Recent Developments”, H. Reda, N. Karathanasopoulos, K. Elnady, J.F. Ganghoffer, H. Lakiss, Springer, (2018), pp:273-296, isbn=”978-3-319-73694-5″, issn=”1869-8433″, DOI:10.1007/978-3-319-73694-5

Minisymposia

  • HPUQ I: Current Challenges in Uncertainty Quantification for Mechanistic Models – Theory, Methods and Tools”, PASC 2018,  Basel,  02-04/07/2018